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We examine encounter evasion game problems for a linear controlled system 
described by differential equations with a small parameter in a part of the deri- 

vatives [ 11. On the basis of the procedure of control with a leader [ 2, 31 we con- 
struct a strategy which ensures an encounter or an evasion generated by its mo- 

tions relative to a specified closed target set within the limits of another closed 

set of phase coordinates. In particular, we examine the problem of evasion 
during an arbitrarily large time interval. The work relies on the formalization 

of differential games given in [Z]. As an example we consider the evasion prob- 

lem for a system asymptotic with respect to the small parameter to a system 

described in [4]. 

1. Let a controlled system be described by the vector differential equation 

X’ = As + Bu + Cu (1.1) 

Here %‘ is an n-dimensional phase coordinate vector ; zc and 2; are r(l)- and r@)-dimen- 
sional control vectors of the first and second players ; A, B, C are constant matrices 

of the appropriate dimensions; the first and second players’ controls are subject to the 
conditions 

(1.2) 

where P and Q are bounded convex sets in vector spaces {u} and (1.). The symbol 
Ra denotes the Euclidean u-neighborhood of set ti and the symbol tiIlJ denotes the 

closed Euclidean a-neighborhood of R. The vectors being considered are treated as 

column-vectors. We use the terms strategies, motions, Euler polygonal lines, and the no- 

tation corresponding to them in the same sense as they were defined in [ 21. 
Suppose that certain closed sets ,ill and I\i are specified in a k-dimensional subspace 

{J.},~ of the n-dimensional phase space (2). We solve the following problem facing 

the second player. This problem is to construct a strategy p operating in a leader-con- 

trol plan and ensuring for all motions, namely, the Euler polygonal lines 5~ [t] genera- 

ted by this strategy, the contact 

(1.3) 

with the neighborhood Mr~l within the limits of the neighborhood N[EI under any action 

taken by the first player compatible with constraints (1.2). The value T* in (1.3) can 

depend upon the motion. In particular, set N can coincide with the whole space {x}~, 
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in which case the second condition in (1.3) is automatically fulfilled. Set .&! can, in 
general, be absent and then the first condition in (1.3) is eliminated, while the second 

one must be fulfilted for t, < t < 6, where the number @ is stipulated by the condi- 
tions of the problem. In particular, when V = 00 we obtain one version of the evasion 

problem on an infinite time interval. We note further that the additional condition 
Z* < 6 can be added to (1.3) in the genera1 case. 

Assume that system (1.1) can be represented as 

z* L= A,z + Dly t B,u + CIu, py’ = A,z + D,y f C2v (1.4) 

Here z is a k-dimensional vector, where the space {.z}~ coincides exactly with the 

subspace {z}k; y is an (n - k)-dimensional vector ; p > 0 is a small parameter. 
The problem is then stated as follows. For a specified initial position {to, ZO, ga} and 

a > 0 we are required to find a leader-control procedure V which, for sufficiently 

small values of parameter lo and for a sufficiently small partitioning step 6 = supi 

(r. 2+1 - Ti) (i = 0, 1, . ..) on the t -axis, ensures the contact 

{z* rr*l) Cz MfC’, {ZA M} E NLE’ (toftfe (1.5) 

for all approximating Euler polygonal lines Jh Itl = (2~ Itl = zA It, t,, zs, yo, 

v, uI*]], YA It] = .?/A k &I, ZO, y,, v, rr I*]]) . 
We approach this problem in the following way. As in [I] we set j.r = 0 in (1.4) ; 

assuming that the denominator 1 D,-’ ) # 0, from the second equation we find the 

quantity 
y” (z, v) = -D,-lA,z - D,-‘Czv (1.6) 

We set up an auxilliary differential equation 

z *O = A# Jr D,y” (f, v) Jr BUZZ + C,v = AZ” t Bu -!- CQ (1.7) 

(A = A1 - DtDz-lA,, B = B1, C = CI - D,D,-‘CJ 

Following @, 33 we compare Eq. (1.7) with the equation of motion of the leader 

w.=Aw-+-Bu, +Cv, (L8) 

for controls u,, and r?* subject to the conditions 

u* G P@I, v* E Q (1.9) 
We assume, further, the fulfillment of the following conditions. 

1. For a specified initial position {to, wo> = {t,, z,,> the second player’s prob- 
lem of performing the motions w [t ] to encounter &_f within the limits of N is solva- 
ble for the system (1. B), (1.9) i.e. a position strategy V +- v (t, w) [ 21 exists which 
ensures the wntact 

{w [r”l) Cz M, {w ItI) E N (to Q t d ‘c* d 6) (1.10) 

(When i%f is present we assume 6 as a finite value ; when M is absent we can have 
6 = oo.) 

2. The system 

s’ = ns - Bp (s) -t cq (SC) (1.11) 

is stabilizable (see 151, p. 477). i.e. system (1.11) can be made asymptotically Liapunov- 
stable (see [S], p. 56) by a suitable choice of linear functions p (s) = pa’s and 4 (s) = 
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QO’s (the prime denotes transposition). 

3. The system 
9’ = D,y 

is asymptotically Liapunov-stable. 
In the general case, according to [Z]. when Condition 1 is fulfilled for any finite 6, 

for the system (1.8). (1.9) there exists a v-stable bridge J+‘, lying in N on which the 

second player can hold all motions w [t] up to contact with I?! inside N for ~*6 6. 

If ki’ is absent the existence of a suitable v-stable bridge w, lying in N, follows 
from [7] under Condition 1 (where now the first inclusion in (1.10) is not required) with 

6<coand6=oo. 

According to Liapunov’s theorem (see 163, p. 79) for the asymptotically stable system 

s: = As - Bp,‘s t Cqo’s (1.13) 

we can find, for any preselected negative-definite quadratic form fi (s) , a positive- 

definite quadratic form n (s) for which the equality 

(s)(l.13) = (3 ’ (As - Bp;? + Cq:s) = p (s) (1.14) 

(p (S) f i B.#iSj, 

i, j=i 

h (s) = i: hi$isJ ) 

i, j=1 

is fulfilled. Here (dh / dt) (1.13) is the total time derivative of function h (S) by virtue 

of system (1.13). 

The following is the main result. When Conditions 1 - 3 are fulfilled, relying on the 

v-stable bridge W and on the function a (S), we can organize, for any preselected 

E > 0 , a leader-control procedure 

Vt {n (z, z, w), u* (TV 2, w), 2’1 (t, T, z, WY u* (*NJ 

such that condition (1.5) is fulfilled for all motions 26. [t] = ZA [t, t,, z,,, v, u [. ]] 
generated by this procedure, provided that the parameter lr is sufficiently small and the 

t-axis partitioning step 8 - supi (T~+~ - TV) (i = 0, $, . ..) also is sufficiently 

small. 

2. We construct the desired procedure v in the following manner. We set up one 

more auxiliary system 
z** =Az* + Bu* $ c* (2.1) 

where the controls U* and C* are subject to the conditions 

u* EP, c* E r* (2.2) 

As the set 1’* in (2.2) we choose a strictly convex set containing the set r = {c : c = 

Cv, u E c’lal} and approximating it so that for any vector c* E I‘* the vector c E 
I’ closest to it satisfies the inequality 11 c - c* 1 < 5, where 5 > Cl is some suffici- 
ently small number.the sense of smallness of which is clarified below. In addition, we 
require that a vector C* E I?*, satisfying the condition 

l’c*’ = min l’c* (2.3) 
&Er* 

satisfy a Lipschitz condition with respect to 1. The indicated choice of set 1’* in I’ and 



; > 0 is always possibie. We assume further (now, as a matter of fact, without loss of 
generality) that the mapping c := CV with c E r and V E yfz) is one-to-one. 

Let US compute, as yet completely formally, the total time derivative da / dt of the 

function h (s), setting s z* - w init,where z* and. w are the solutions of Eqs. (2.1) 

and (1.8) respectively. We obtain 

s_=z*_,,, (A (3” - 10) -+ B (u* - u*) _I- c* - (‘l’*) (2.4) 

We choose fd*O (z+, w) from the maximum condition 

(2.5) 

for any value of r with z* z* IT 1 and u? -: W [tl l Next, from the value 7zh0 we 

choose, assuming (as yet formalk) that the inclusion {t, W [%I} cg Mi is fulfilled at 
instant z , for some interval r b< 1.G z im 6 the function 

L’* [t] -. q(t, T, z*, w, 7r*fJ) (z*- Y*it], w =uJ hl) 

from the condition either of retention of the motion 20 it1 of (1.8) on bridge W for 
z < t < z -+ 6 or of contact with M for I? < z _i- 6. Such a choice of the con- 

trol v* -= Vlr ” is possible as a consequence of the u-stabiiity of bridge W (see [Z]). 

We select the “control” ce* (z*, v) from the minimum condition 

(2.6) 

From the chosen ce* (z*, w) we select the vector c,, (z*, w) E I‘ closest toit and 

next from cs (z*, w) we determine V0 CZ Ql11 for 11 z* - u‘ Ij >, v* > 0 by com- 
plementing the construction of 1’” 6I @“I for 11 z* - w I] < v* so that the function 

v” (z*, w) satisfies the Lipschitz condition. The meaning of the sufficiently small con- 

stant v* > 0 is clarified below. We note that by the given constructions the vector 
V’ (z*, W) will satisfy the Lipschitz condition with respect to Z* - w and the inequal- 

i”y II co* - CV” IJ < 5 (2.7) 
will also be satisfied. 

The control of the system composed from object (1.4) and leader (1.8) is effected in 

a discrete scheme zi < t < zi+l (i := 0, 1, . , ,, z. = to) as follows, At the ini- 
tial instant we assume {to, IU~) = {ts, zo} , then on each semi-interval Zi < t < 

ri+r the leader’s phase vector w a it] is varied in accordance with Eq. (1.8), where 

u* = u*O (ZA [&I, m&3 [Til) (2.8) 

‘#I It1 = ?+I’ (k zi, zA ITi], l”A [ril, 7$’ (zA hi], WA [If&) (2.9) 

The object’s phase vector {ZL\ It], yb, It]} is varied in accordance with Eq. (1,4), where 

V = V” (% [ri], LL’A kif) (2.10) 

according to the problem’s statement, the control 11 :- II It] in (1.4) is developed by 
the first player on the basis of some control rule selected by him, and we can run into 
any measurable realization II - II If 1 constrained only by the condition IL [t] E JJ. 
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However, from the sense of the problem analyzed here, the controls U* of (2.8), ?‘* of 
(2.9). and v of (2.10) are developed by the second player. 

Let us show that under Conditions 1 - 3 described in Sect. 2 the procedure V + 
v*‘} for choosing the controls 21, u and 27* for every preselected value E > 

with a suitable choice of 5 > 0, :, > 0, p > 0 and 6 > 0 , the E- 

proximity of motions zA [tl and WA [t] for t > to and, starting from a certain in- 

stant t = t, f 6” (6* > 0), ensures also the proximity of motions ya [tl and 

yA” (za ItI, c, i 6* > 0 is any preselected small quantity. 
As a matter of fact, as a consequence of the asymptotic stability of system (1.12), by 

virtue of Liapunov’s theorem (see [S], p. 79) we can find, for any preselected negative- 

definite quadratic form 11 (y) , a positive-definite quadratic form E (y), whose total de- 
rivative (@, / dt) ( 1,12 ) by virtue of Eq. (1.12) satisfies the condition 

(3.1) 

We now set 
1, i=l i, j=l 

s = z,, [tl - WA [t] !/* = PA ftl - YA” (ZA itI, 2, (20 It], *A [$I)) 
and we set up the equatiois of perturbed motion on the semi-interval [ZI, ri+I) 

dsA [tl / dt = ASA ItI -j- D,YA* [tl + B (U - u*) -j- C (V - v*) (3.2) 

4t: ItI 
dt = +D"y*" ItI - 

dy; @A ItI, v) 
dt 

All the differentiations in (3.2) are legitimate since under the choice of controls made, 

the corresponding functions are absolutely continuous for ‘Ci < t < Zi+l . Therefore, 

equality (3.2) makes sense for almost all values from each semi-interval ri < t < 
Zi+l. Equality (3.2) can be preserved when passing to the whole semiaxis t > t, , how- 

ever we need take into account that at the instants t = Zi , as a consequence of the step- 

wise variations 

it is necessary to treat now the term dy” (z, F) / dt as a generalized derivative which 
contains a term of the form Xi6 (t - zi), where 6 (t - zi) is the impulse &function. 
Here the vector xi satisfies the estimate 

[I Xi II< Ko6, Ktj = const , 6=sup,(zi+l--zJ (i=O,l,...) (3.3) 

We estimate the change in the Liapunov function 

Y (s, !I*) = k (s) t E (y*) (3.4) 

by virtue of (3.2), where the controls IL*, c*, ZI are selected in accordance with for- 

mulas (2.8) - (2.10). By computing, now no longer formally, the total time derivative 
(dy / dt)(a.n)of the function y (s, y*) (3.4) by virtue of system (3.2), we obtain 

(3.5) 

(%)cs.z, = (%)’ (As/, It I + DIY: PI + B (u ItI - @A [%I)) + C (v (~a lql) - 

v,[t])) + (;$I’ (+- &yr\ [t] - “’ (“’ [‘ji;’ (” [“‘)) ) (zi <t <z~+~) 



Here at the instants t L= ri the component t (y* It]) in the function 1’ (s 1 t 1, Y* itI) 
further undergoes, as a consequence of (3.3), tne jumps 

E (Y* [till - E ty* [Zi - 01) < 1(“6 (3.6) 

Taking (1.14), (2.5) - (2.7) and (3.1) into account, we can verify that the estimates 

-$ \<p @A [t]) + $ r(!/i itI) + KIII sA ItI 11 11 Y: ItI 11 + (3.7) 

&II Y: ItI II+ &~11s.l ltl Ii+ K4 (I + IkA itI 11 + ib: ttl II) 6 + 

KS (pi - Ti-1)” for v* '< SA [t]II\(v* 

& 
-p+l(Ym+L(~ +lIYa~lll)~+ (3.8) 

L II yi*\ [tl II + L34. + LLV, for II SA It I II < % 
are valid on the semi-interval ri < t < ri+t . Here Kj 6 = 1, . . ., 5) and 

Lj (i = 1, . s .( 4) are constants, v* is so small a constant that the inequality 

‘Co-tmax 
UEP 

is fulfilled in the region 11 so 1 t 1 I( < v* 

With due regard to inequality (3.6) and by arguments which are standard in the theory 
of stability of motion [S. 6, 81 and in the theory of differential equations with a small 

parameter Cl], it is not difficult to show the validity of the following statement. For any 

arbitrarily small e > 0 we can find so small values of V* (e) > 0, 5 (e) > 0 and 

values of PO (e) > 0, 6, (e, p)> 0 such that for p < p. (e) the procedure des- 
cribed for choosing the controls, developed in the leader-control scheme, ensures the ful- 

fillment of the inequalities 

\ so it] 11 < a for t > to; 11 YA" [t] 1 < & for t > to + 6 (3.10) 

for all motions sA it1 and y A* [t], generated by this procedure and having the parti- 
tioning step supi (zi+r - pi) < 6, (e, p) . Since here the choice of control vu* (t, 

zi, ZA [zil, WA hiI, t&a (-)) ensures the retention of matron WA [t] on w, we obtain 
the following result. 

Theorem. let Conditions 1 - 3 be fulfilled. Then for every e > 0 we can organ- 
ize a control procedure 

Vt iv (z, 2, 4, 71, (T, 2, w), u* (4 =, 2, U’, u* (*))} (3.11) 

which for sufficiently small p (e) > 0 and 6 (e, p) > 0 ensures the fulfillment ofthe 
conditions 

{z/, [r’]} E MIE’, l&i [t]) E NrE’ (to < t <T*) 

for a11 motions zA [t] = zA [t, to, ~0, V, ZL [. 11, generated by this procedure. 

4. In conclusion we examine an example illustrating the method described for con- 
structing a control with leader for a system described by differential equations contain- 
ing a small parameter in a part of the derivatives. 
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Suppose that there are two material points m(l) and m(2) moving on some plane Il. 

The material point m (I) of unit mass pursues the material point m (2) of mass p experi- 

encing the medium’s drag which is linear in rate with a unit proportionality coefficient. 
On each of the points acts its own control force J’(l) = u and F(r) = v , respectively ; 
these forces are subject to the constraints 0 u 11 < h(l), 1 u 1 < h(2). 

let pti) (i = 1, 2) be the radius-vectors of points ,(‘I, By introducing the notation 

p _ p = [;:I ) p’(l) I= [-I , p’(2) = [;;I 

we obtain the equations of motion of the point m.(l) and m (2) in the form of the follow- 

ing system of differential equations: 

31 
‘=a 3 - y,, 23' = 34 - y,, 23' = 111, 3,' = u3. (4.1) 

PY,’ = -Y, + VI, PLY,’ = -Y, + va 

where p > 0 is a small parameter, We look at the evasion problem for the second pla- 

yer striving to prevent contact of the material points m(l) and mt2) along the geometric 

coordinates during the interval to < t < 6, where 6 is an arbitrarily large fixed num- 

ber. Conditions (1.5) here have the form 

{zA [r]} E @I, to<\<<fl (4.2) 

where the set iV is determined by the inequality z12 + zz2 > u2,e > 0 is a sufficiently 
small number and e < CL 

Let us pass on the constructing the desired procedure V for choosing the controls en- 

suring the fulfillment of condition (4.2). Setting p = 0 in (4. l), we determine the vec- 
tor-valued function Y” (z, V) of (1.6). having the form Y” (z, u) = U. We set up the aux- 

iliary system of form (1.7) described here by the equations 

31 
*o=zo 

3 - Qr zz 
O=zO 

4 - vz, 33 * = u1, z*p"=u3 (4.3) 

We compare Eqs. (4.3) with the equations of motion of the leader of form (1.8). We 

obtain 
Wl * = w3 - v1*, w3' = w4 - va*, w3' = u1*9 w4 * = ua* (4.4) 

where the controls u+ and U* are constrained by the conditions 

II Ut II < d’) + a, II II* II < h(“) - a ( a > 0) (4.5) 

Suppose that we are given some initial position {to, zo}. We compare it with the ini- 

tial position {to. wO} = {to, zO). According to [4] the second player can always choose 

in system (4.4) his own control u* for the chosen position {to, w,,} in such a way that 
for any choice, of which he is informed, of the first player’s control u,, , he ensures the 

evasion Wl” ]tl + wza [tl > aa (4.6) 

where o > 0 is a sufficiently small number depending on the initial data and on the 

fixed 6. In particular, for example [9]. at each instant t E [to, e] he can choose the 
control v* [t] from the following conditions: 

(v*, w(i)) = 0, (V,, w(2)) < 0, 11 v* 11 = h(2) - cc 
(4.7) 

Jl) = w1 

I1 zL'3 ' 

,,(!a _ lug 

[ 1 U’4 

where (u,, ,a’i’) is the scalar product of vectors V, and w(~) . Then, according to the 



results in [7] v-stable bridge w exists for system (4.4). which passes through the initial 
position (to, U~O> and lies in N for ta < t < 8, i.e. Condition 1 is fulfilled. Here it is 

sufficient to choose control u exactly from conditions (4.7) to retain the motions w [t) 

on bridge W . 

To stabilize a system of form (1.11) described here by the equations 

$1 * = 33 - R (s), sp’ = s4 - 42 (s), s3’ = --pl (s), s** = -p2 Is) 

it is sufficient to set 

91 6) = $1 + $3, 93 (s) = sy i- s,, 171 (3) = S3? Pa (4 = $4 

i.e. here Condition 2 is fulfilled as well. Having specified the negative-definite quadratic ._ 
form fl (8) (see 1.14)intheform,forexample. 4 

P(s) = - 2 si 
i-.=1 

we find the positive-definite quadratic form h (s) which in this case has the form 

The system of form (1.12), described here by the equations 

Y,’ = -Y,, Y,. = -Y, 

is asymptotically Liapunov-stable, which signifies the fulfillment of Condition 3. 

Thus, Conditions 1 - 3 of the theorem are fulfilled for the given problem ; consequent- 
ly, the second player can so organize the control procedure (3.15) with leader that it 

ensures the fulfillment of condition (4.2) for sufficiently small values of the parameter 

p (e) and for a suf~ciently small pa~itioning step 6 (e, P) + 

This procedure is that the second player selects the control r+ 1tJ from conditions 

(4.7) while the controls U* and u, by the following formulas: 

(h(1) + cl) s 2ci h@) s. 

Y* = $‘f&jIq ’ vi = fs,a +. $22 + i. (332 +T ti = ** 2) 

for 0 < v, < 1 s [I < v* , where &, is a sufficiently small number. As regards the mag- 
nitudes of the small constants v*, v* and $,, to find them it is necessary to write out 

expression (3.5) explicitly for the given example, to estimate it, and to obtain the desi- 
red values from this estimate, 

We note further that since it is possible to ensure evasion (4.6) in the system described 

by Eqs. (4.4) during the infinite interval t, < t < w [lo] for a sufficiently small c > 

0, the described procedure for constructing the controls u, u* and v* ensures evasion 
(4.2) for all t > t, in the system described by Eqs. (4.1). 
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We derive conditions sufficient for the completion of pursuit by the time-inde- 
pendent feedback principle ; the paper relates closely to the investigations in 

Cl - 71. 

1, Let a linear pursuit problem in the n-dimensional Euclidean space R be described 
a) by the linear vector differential equation 

dz i dt :.= CL - u +- 21 (1.1) 

where C is an nth-order constant square matrix ; u .T= 11, ft) E P and v = v (t) E 

Q are vector-valued functions, measurable for t > 0 , called the controls of the play- 

ers (the pursuer and the pursued, respectively) ; P C I? and Q c R are convex com- 

pacta ; 
b) by a terminal set Af representable in the form M = M, $- wO, where M,, 

is a linear subspace of space R, W. is some compact convex set in a subspace L 
which is the orthogonal complement to 1cf, in R By n we denote the operator of 

orthogonal projection onto L; we denote the dimension of L by v and the unit sphere 

in 1’, by K. We assume that Y > 2. We denote the matrix etC by Q, (t). Every Cara- 
thdodory-solution z (t) [I], T, Q t < ‘T, , of Eq, (1.1) with the initial condition 
z (Z’,) = z0 is called a motion and denoted z (t) = z (t; T,, z,,, u, u, T,). 

The pursuer’s aim is to bring point z onto set M ; the pursued tries to prevent this. 
We say that the pursuit from a point z,, can be concluded in a time t (z,) if there exists 
a vector-valued function u (z) E P (called the “synthesis”), defined on the wholespace 
R, such that for arbitrary pursued’s control c> (t), the pursuer by applying the control 


